Preliminary communication

Reactions of pentafluorophenylmercuric bromide with organometallic transition metal anions

T. ADRIAN GEORGE

Department of Chemistry, University of Nebraska, Lincoln, Nebraska 68508 (U.S.A.) (Received September 14th, 1971)

The recent report¹ of the unsuccessful attempt to prepare $C_6F_5HgFe(CO)_2C_5H_5$ prompts this communication of the succesful preparation of the above and similar compounds in this laboratory. Pentafluorophenylmercuric bromide reacts with the sodium salts of π -C₅H₅Fe(CO)₂, π -C₅H₅Mo(CO)₃, and Mn(CO)₅ in tetrahydrofuran to give the new compounds C₆F₅HgFe(CO)₂C₅H₅, C₆F₅HgMo(CO)₃C₅H₅, and C₆F₅HgMn(CO)₅, respectively, in good yield. However, attempts to prepare C₆F₅HgW(CO)₃C₅H₅ by the above method gave Hg[W(CO)₃C₅H₅]₂ and Hg(C₆F₅)₂.

A few organomercury transition-metal complexes have been prepared^{2,3} but all readily decompose at room temperature or below (e.g. Eqn. 1).

$$Fe(CO)_4(HgMe)_2 \rightarrow \frac{1}{n}[Fe(CO)_4Hg]_n + \frac{1}{2}Me_2Hg$$
(1)

The new compounds $C_6F_5HgFe(CO)_2C_5H_5$, $C_6F_5HgMo(CO)_3C_5H_5$, and $C_6F_5HgMn(CO)_5$ appear to be the first thermally stable organomercury transition-metal complexes, being thermally stable to 100°. Above 100° smooth redistribution occurs to give bis(pentafluoropheny!)mercury and the corresponding bis-transition-metal complex of mercury (*e.g.* Eqn. 2).

$$C_6F_5HgMo(CO)_3C_5H_5 \rightarrow \frac{1}{2}Hg(C_6F_5)_2 + \frac{1}{2}Hg[Mo(CO)_3C_5H_5]_2$$
 (2)

All are air-stable solids that decompose slowly in solution, in an inert atmosphere. Their IR and ¹H NMR spectra are given in Table 1.

TABLE 1

PROPERTIES AND YIELDS OF COMPLEXES

Compound	$\nu(CO) (cm^{-1})^{d}$	$\tau^b(C_5H_5)(ppm)$ M.p. ^c (°C)	Yield (%)
$C_6F_5HgMo(CO)_3(C_5H_5)$	1999s, 1966vs, 1887vs	4.6 160	52
$C_6F_5HgMo(CO)_2(PPh_3)(C_5H_5)$	1960m, 1885s, 1865s, 1820vs	5.0 224-225	80
$C_6F_5HgMo(CO)_2[P(OPh)_3](C_5H_5)$	1923s, 1890s, 1844vs	5.3 167–168	- 85
C ₆ F ₅ HgMn(CO) ₅	2110vs, 2020vs, 1941m	150	56
$C_6F_5HgFe(CO)_2(C_5H_5)$	1992s, 1967vs, 1922vs	5.3 145-146	58

^aCH₂Cl₂ solution. ^bCDCl₃ solution. Relative to SiMe₄. ^cWith decomposition.

J. Organometal. Chem., 33 (1971) C13-C14

PRELIMINARY COMMUNICATION

Iodine cleaves the mercury-metal bond giving pentafluorophenylmercuric iodide and the corresponding iodo-transition metal complex. Redistribution occurs very rapidly with mercuric bromide at room temperature (Eqn. 3). Substitution occurs readily between $C_6 F_5 HgMo(CO)_3 C_5 H_5$ and triphenylphosphine and triphenyl phosphite in ethanol at

$$C_6F_5HgMo(CO)_3C_5H_5 + HgBr_2 \rightarrow C_6F_5HgBr + BrHgMo(CO)_3C_5H_5$$
(3)

reflux to give the new compounds $C_6 F_5 HgMo(CO)_2 (PPh_3)C_5 H_5$ and $C_6 F_5 HgMo(CO)_2 [P(OPh)_3]C_5 H_5$, respectively, in good yield.

Undoubtedly, the stability of these pentafluorophenylmercury transition-metal complexes (compared with the unstable alkyl- and aryl-mercury transition-metal complexes) is due to the pseudohalide character (high electronegativity⁴) of the pentafluorophenyl group. However, it has been reported that it is not possible to prepare NCHgMo(CO)₃C₅H₅⁵, which would contain a C-Hg-metal bond, by the exchange reaction, Hg(CN)₂ + Hg[Mo(CO)₃C₅H₅]₂, which suggests that electronegativity is not always the overriding factor.

Finally, it is again apparent that synthetic organometallic chemistry still contains a large element of luck associated with selecting the correct reaction conditions.

EXPERIMENTAL

Preparation of $C_6 F_5 HgFe(CO)_2 C_5 H_5$. Freshly prepared $C_6 F_5 HgBr$ (3.3 mmol.) in 15 ml of THF was added dropwise to NaFe(CO)_2 $C_5 H_5$ (3.3 mmol.) in 40 ml of THF under nitrogen. An immediate reddish color was observed that finally changed to a yellow color. After it had been stirred for 30 min., the reaction mixture was filtered and stripped to dryness (25°/0.01 mm). The solid was chromatographed on alumina (using deaerated solvents). Elution with hexane/benzene (75/25) gave a yellow band. Solvent was removed *in vacuo*. Mustard colored crystals of product were obtained by recrystallising from a heptane solution by cooling to -78° (Anal.: C, 28.7; H, 0.9; F, 17.6. Calcd.: C, 28.7; H, 0.9; F, 17.5%.)

M.p. and yield data are given in Table 1 for all the complexes.

REFERENCES

- 1 S.C. Cohen, S.H. Sage, W.A. Baker, J.M. Burlitch and R.B. Petersen, J. Organometal. Chem., 27 (1971) C44.
- 2 K.A. Keblys and M. Dubeck, Inorg. Chem., 3 (1964) 1646.
- 3 F. Hein and E. Heuser, Z. Anorg. Allgem. Chem., 249 (1942) 293.
- 4 S.C. Cohen and A.G. Massey, Advan. Fluorine Chem., 6 (1970) 83.

J. Organometal. Chem., 33 (1971) C13-C14